Type of publication: | Artikel |
Publikationsstatus: | Veröffentlicht |
Zeitschrift: | Applied Sciences special issue "Intelligent Robotics" |
Band: | 12 |
Nummer: | 6 |
Jahr: | 2022 |
Monat: | März |
Seiten: | 3153 |
DOI: | https://doi.org/10.3390/app12063153 |
Abriss: | We propose a deep reinforcement learning approach for solving a mapless navigation problem in warehouse scenarios. In our approach, an automatic guided vehicle is equipped with two LiDAR sensors and one frontal RGB camera and learns to perform a targeted navigation task. The challenges reside in the sparseness of positive samples for learning, multi-modal sensor perception with partial observability, the demand for accurate steering maneuvers together with long training cycles. To address these points, we propose NavACL-Q as an automatic curriculum learning method in combination with a distributed version of the soft actor-critic algorithm. The performance of the learning algorithm is evaluated exhaustively in a different warehouse environment to validate both robustness and generalizability of the learned policy. Results in NVIDIA Isaac Sim demonstrates that our trained agent significantly outperforms the map-based navigation pipeline provided by NVIDIA Isaac Sim with an increased agent-goal distance of 3 m and a wider initial relative agent-goal rotation of approximately 45∘. The ablation studies also suggest that NavACL-Q greatly facilitates the whole learning process with a performance gain of roughly 40% compared to training with random starts and a pre-trained feature extractor manifestly boosts the performance by approximately 60%. |
Schlagworte: | automatic curriculum learning, autonomous navigation, deep reinforcement learning, multi-modal sensor perception |
Autoren: | |
Herausgeber: | |
Anhänge
|
|
[Bib|RIS] | |
|